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Mach's Principle. Part I. Initial State of the Universe 
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The integral formulation of equations of general relativity proposed earlier as a 
mathematical tool for Mach's principle forbids the conventional singular cos- 
mologies but is compatible with the de Sitter initial space. 

This paper is stimulated by Raine's fundamental review on Mach's 
principle (Raine, 1981). Some of the results presented here were published 
earlier (Altshuler, 1972). The integral form of Einstein's equations as a 
general covariant selection rule for Machian worlds was proposed by 
Lynden-Bell (1967) and the author (Altshuler, 1966). This approach was 
developed by Sciama, Waylen, and Gilman (Sciama et al., 1969; Gilman, 
1970). The simplified scalar version of the "integral formulation" was 
considered also for conformally fiat spaces by Maltzev and Markov (1977). 

As will be shown in this work the Machian initial conditions preclude 
cosmologies with a conventional matter equation of state near the singular- 
ity--in direct contradiction to Gilman's result (Gilman, 1970). Since the 
result may depend on the choice of Green's function the whole proof below 
is carried out in parallel for two integral forms--the SWG one and that of 
the author. It turns out that our version (but not SWG) permits the de Sitter 
fiat space, i.e., cosmologies with initial p = - e  equation of state. 2 The 
possibility of the vacuumlike matter equation of state in a superdense initial 
epoch was considered earlier by Sakharov (1965) and Gleener (1965). 
Recently this idea was revived by Starobinsky (1980), Brout et al. (1980), 
and Guth in his "inflationary universe" (1981), and now it draws more 
attention. (cf. also Linde, 1979; Sher, 1980; Kazanas, 1980; Casher and 
Englert, 1981; Mukhanov and Chibisov, 1981; Linde, 1982.) 

1Profsoyuznaya St., 142-3, Apt. 115, Moscow 117321, USSR. 
2The author is grateful to Academician A. Sakharov, who proposed comparing this model 
with Mach's principle. 
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A few comments on Mach's principle. [For more details and the history 
of the problem see Raine (1981) and Chin and Hoffmann (1964).] All 
physical phenomena are obviously noninvariant with respect to general 
coordinate transformations and, in particular, when accelerated frames are 
used. Newton attributed this noninvariance to the existence of absolute 
space, but Mach argued that it is the whole matter of the universe that is 
responsible for it. Hence, for Mach, the empty space is nonsense (Mach's 
paradox). Analyzing his general relativity from this point of view Einstein 
concluded that Machian solutions of the equations 

8 7rG 
Rik - -  gikR = - - 7  Tik (1) 

(notation is given in the Appendix) are those, where the gig field is completely 
determined by the matter distribution in the universe (Einstein, 1955). As 
was shown in Lynden-Bell (1967) and Altshuler (1966), this Einstein 
requirement permits a general-covariant rigorous formulation, writing (1) 
in the form of a nonlinear integral equation 

= 8~'G f /--~(zet)c~/3/~ 
g,k(X) C 4 J "-',k ~,Ylg)T,~r d4y (2) 

Here the kernel, retarded Green's function, bitensor in the Riemannian 
space with the metric g~k (Roman indices are related to point x, Greek to 
point y), is defined in this space by a linear differential equation: 

~ ( 4 ) ( X  - -  y) 
rn n ~ ot ~l z 1 ct fl a fl 

= ~(gi gk + gggi ) (_g)l/2 l:.ik t-tin.iX, y) (3) 

Application of the linear differential operator E~" to (2) gives (1) if the 
following quite weak condition is fulfilled: 

E,~" g,,, = R,k -- �89 (4) 

The arbitrariness of E ~"~" is the main difficulty of the approach. Perhaps the 
most natural and traditional way is to define E~"~ ~ as the second variational 
derivative of the gravitational action 

S = - f R ( - g )  t/2 d4x (5) 

In view of condition (4) this differentiation should be done over the mixed 
components of small metric variations. Let 

g i k  -0, g l k  = g i k  d -  h i k  = g i g  + ginh~ 
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and define: 

1 ar 
E,k,, ' -- (_g) , /2  ~ hpq=O (6) 

In the Hilbert-deDonder harmonic gauge 

k 1 k n (h~-sg~ h,)~k = 0 (7) 

one obtains (Altshuler, 1972; 1968): 

E imk n I m n i i n n  = -~(g i  g k - ~ g i ~  )g-I- Ri.mk." 
1 m n  ..~ m n ~  \ +~(g,kR g -~,k)--l g,kg""R (8) 

(i *+ k symmetrization is implied). Evidently, condition (4) for E i'~" in (8) 
is valid. 

In SWG approach the differential operator is defined by 

~(gkn 8R i + gl, 8R k) = EikmnSg 

and in the gauge (7) it gives (Sciama et al., 1969; Gilman, 1970) 

" r n n  l z  m n n m 1 m n n m +~(R~. k. + E~k = atg~ gk + g~ gk )U R~.k. ) (9) 

Now, instead of (4), "m" E ~k gin, = R i k ,  the SWG integral formulation differs 
from (2) and has the form 

= 87rG f (~(zet)~k~(X ' Ylgoo)(T~t3 - �89  1/2 d4y (10) gik(X) C 4  J 

where Green's function G is defined by equation (3) with differential 
~ m n  operator E~k �9 

Equations (2) or (10) preclude all non-Machian empty (T~k--= 0) and 
asymptotically empty spaces (Lynden-Bell, 1967; Altshuler, 1966). But the 
fact that the integral formulation has something to do with the physical 
Mach's principle is best demonstrated by the following quantitative model 
example (Altshuler, 1966). Let us consider a thin, hollow, massive cylinder 
rotating with angular velocity to around its axis in the empty space [cylin- 
drical analogue of the familiar Lense-Thirring sphere (Thirring and Lense, 
1918)]. The rotation of the cylinder induces the rotation (with angular 
velocity ~)  of the inner inertial frame. Exact solution of Einstein's equations 
gives for f~: 

2a 2/xG 
~'~--- l ' i ~  to '  a~-~- c 2 
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where/.t is the cylinder linear mass density. Machian "perfect dragging" 
(1~ = to) occurs at a = 1, i.e., at 

C 2 
- 7 x 1027(g/sm) /~ =/Xo = 2G 

It turns out that the integral forms (2), (10) being rewritten for small 
metric variations, induced by cylinder rotation, forbid all/~ ~ tZo. This result 
depends on the choice of Ei'~". As is shown in Altshuler (1966), a different 
numerical coefficient before the d'Alembertian in (8) or (9) will cancel the 
result. 

To verify the consistency of Einstein's spaces with (2) we should write 
down explicitly the initial conditions resulting from (2). Let us put 

8~-G 
= E~t 3 g~ c 4 Tat3 y8 

[see (1), (4)] into the right-hand side of (2) and integrate it by parts. The 
validity of (2) demands that the surface integral must be zero and on account 
of the retarded character of the Green's function we get from (2) the 
following initial condition: 

lim{f Gik:;~,(x,y)gU~ = 0  (11) 

for 

yO_.> -co or y~ 

the initial moment in the singular cosmologies. [We do not concern here 
difficult problems, arising in spaces with particle horizons (Raine, 1981).] 

The general form of the retarded Green's function determined by 
equation (3) is 

Gm,~t3(x, y) = O(x~ Y ~ Y, P,,(~(x)Q,~(~(y) (12) # 

where O(x ~  yO) is the standard step function; index ~: enumerates all the 
linear independent solutions (complete set) of the homogeneous linear 
equations 

E~"P,, ,  =0 (13a) 
?8 E ~t~ Qy~ = 0 (13b) 

(After summation over ~: the right-hand side of (12) is relativistic-invariant). 
Equations for Pm~(x) and Q~t3(Y) coincide since by definition (8) [or (9)] 
E"~n is a self-conjugate operator. The Green's function (12) is the solution 
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of (3) if the functions P,.., Q~t3 satisfy two conditions [we write it symboli- 
cally without indices; the exact form can be easily reconstructed by substitu- 
tion of (12) into (3)] 

y~ p(~)Q(e)lyO= o = 0 

Op(~) 
E - -  Q(e)]9=x ~  8(3)(x-y) 

OX ~ 

The use of (12) reduces (11) to the following set of initial conditions: 

lim [ f Q(e)2;.(y)g"~ d3y] =0 (14) 
yo_~_co k J 
(y~ 

for all ~:. 
Thus to verify (2) we should analyze formulas (13b), (14). Functions 

Q~(y )  depend on the metric gik as on an external field and (14) selects 
only those metrics which "screen" all the solutions of (13b). This condition 
is very strong. Further the Friedman-Robertson-Walker flat model is con- 
sidered. The space-time metric is 

ds 2 = c 2 dt 2 -  a2( t )[ ( dx')2 + (dx2)2 + (dx3) 2] (15) 

The familiar Einstein equations (the dot denotes differentiation with respect 
to the time t) 

d 2 87rG 
3 a2--  c4 e 

d 
~ + 3 - ( p + e ) = 0  

a 

for the matter equation of state p = 7e (p is the pressure, e is the energy 
density, y = const ~ - 1) give 

2 
a(t)  =cons t .  t m, m (16) 

3(1+v) 

And for the de Sitter fiat space (p = - e )  we have e = eo = const, 

/83TG Eo~ 1/2 
a ( t ) = c o n s t . e  m, A = \  C4 3 ]  (17) 

Let us study the initial conditions (14) for the metric (15). The three- 
space integral in (14) annihilates all y-dependent modes of Q~(yO, y). Thus 
to verify (14) it is sufficient to study only time-dependent solutions of (13b). 
An explicit calculation of E ~ Q v ~  by means of (8) for metric (15) shows 
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that the invariant trace Q~ of the tensor Q ~  entangles with its Qo ~ com- 
ponent. The contraction of equation (13b) and its (o ~ component are written 
down here for two functions 

u , ( t )  =- QO i -~Qc~, 

+ 3 a  fil + (4K & 
a 

U2(t)-- Q~: 

10a=  
a z ,I U1 \a  a2,1Ua=O 

�9 . 3ft .  [2~i 4~i2\ [~i ~2~ 
U2 +--~- U2 + ~--a-+--~'y-)U2-4~a-a-~)UI = 0  

A similar system for the SWG differential operator (9) is 

2 2 a2,1Ul-~a+--~-) U2=O 

�9 �9 [ 4 ~  2 d 2 \  [ / /  d2\ 
02 +3aa U2-~--~+-'~-) U2-4~a---~) U, =0 

Initial condition (14) now takes the form 

(18a) 

(18b) 

lim [/J~)(t)  �9 a3(t)] = 0  for all ~: (19) 
t - +  - - o o  

(t-,O) 

"where ~: = 1, 2, 3, 4, refers to four linear independent solutions of the systems 
(18a) or (18b). Equations (18a), (18b), and (19) enable one to study the 
model (15) for any a(t). 

For singular cosmologies (16) the solution of  (18a) and (18b) has the 
form 

U1 = C1" t p, U2= C2" t o (20) 

where the power degree p acquires four values p(~), determined by the 
bi quadratic equation [for the systems (18a), (18b) respectively]: 

v = - p 2 + ( 3 m -  1 ) p - 6 m  2 

v2+6m(2m - 1)v - 12m2(3m - 1) = 0 (21a) 

v Z - 1 2 m 2 = 0  (21b) 

Substitution of (16) and (20) into (19) shows that for this initial condition 
(when t + 0) to be valid the inequality 

p - l + 3 m > 0  (22) 

is necessary. It is easily seen that (22) cannot be true for all four p(e) 
simultaneously in both cases, (21a) and (21b). Thus the cosmologies (16) 
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are inconsistent with the integral forms (2) or (10). We can suppose that 
Gilman's (1970) opposite result is due to a loss of the most singular modes 
Q~(y) which determine Green's function behavior near the singularity. 

For de Sitter space (17) equations for U1, U2 in both systems (18a) 
and (18b) are separated and to verify (19) it is sufficient to study only the 
second equations. Substitution of (17) in the second equations in (18a), 
(18b) gives 

D2+3AO2+6A2U2 = 0 (23a) 

U2 + 3A Uz - 6A z U2 = 0 (23b) 

In both cases the exponential 

U2~ ezt 

is the solution of (23a), (23b) for two values of z: 

Z ~1'2) = �89 • i ~ ) A  (24a) 

Z (l'z~ = �89 + , , ~ ) A  (24b) 

The initial condition (19) now takes the form 

lim [Z ~e) e (z~+3A)'] = 0 for ~ = 1,2 (25) 
t - ~  - - o o  

that is fulfilled for (24a) and not for (24b). 
Thus the integral form (2) with Green's function defined by (3), (8) 

[and not the SWG version (10)] selects the universe beginning its evolution 
from the de Sitter most symmetric state. This scenario puts the well-known 
questions: How the Zero-entropy de Sitter state decays into our universe 
and generates its entropy ? And inversely: does the matter go into vacuumlike 
phase at the finite stage of the collapse and what may be a dynamical 
mechanism of the entropy and temperature decreasing at such transition? 
At present, the physical nature of the p = - e  matter equation of state is 
understood poorly. From the point of view of Mach's principle this state 
is singled out because it has no comoving frames (Gleener, 1965) and the 
very problem of Newton's bucket is eliminated. It must be a strongly 
bounded collective state with practically infinite excitation energy for any 
individual particle. But then the question arises: why is the graviton an 
exception and why is its propagator in (2) supposed to exist in the de Sitter 
world? 

The inequality of gravitational field and all the other fields is a serious 
drawback of all the "integral formulation" approach to Mach's principle. 
"Why is the gravitational wave's energy-momentum excluded as the possible 
source of the metric gig in the right-hand side of integral form (2)?" This 
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question was put to the author by Professor Wheeler in September 19683 
and now, 14 years later, I cannot yet answer it. Perhaps, it is natural, since 
the very notion of Mach's principle needs a better physical foundation. I 
would like to speculate that a pathway to Mach's principle may be the idea 
of "confinement" generalized from the Yang-Mills theories to gravity. 

Confinement forbids dynamically states with nonzero total charge 
(color), i.e., with nonzero Gauss flow at infinity. In gravity, unlike gauge 
vector theories, "charge" (mass) is always of a definite sign, and to make 
it zero the space should be closed just as Mach's Principle demands. In 
quantum chromodynamics gluon field exists only in the vicinity of quark 
sources, inside strings and bags. A similar phenomenon in gravity means 
probably the absence of absolute space, i.e., Einstein's statement that the 
gik field is completely determined by the matter. From this point of view 
the universe must be considered as a "bag." How should the theory of 
gravity be modified to include the dynamical confinement, i.e., to be a theory 
which does not possess non-Machian solutions of field equations? 

In the phenomenological description of confinement in vector gauge 
theories the dielectric permittivity of vacuum e is supposed to be a dynamical 
field. In the typical Lagrangian (see, e.g., Kogut and Susskind, 1974; Fukuda, 
1978) 

1 ik 1 Oe Oe +~z(~) v(~) L = --~ eF~kF (26) 
Ox k OXk 

the crucial confining role is played by a potential V ( e )  which forbids 
e = const at infinity, i.e., "pushes" e to zero in vacuum. The direct gravita- 
tional analogy of (26) may be the Brans-Dicke Lagrangian supplemented 
with a potential (cosmological term) V(~): 

1 0 q ~  Oq~ 
L = - ~ R  + 0, V(~) (27) 

g~ Ox k OXk 

where V(~0) should "push"  Brans-Dicke field ~ to zero in empty space. 
In the next paper such a theory with unstable potential [ V(q~)-~ -o o  when 
q~-~ 0] is studied in the context of "Big Numbers" problem. A study of 
Machian consequences of this theory is the scope of a future work. 
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A P P E N D I X :  N O T A T I O N  

We follow the metric convent ions  of Landau  and  Lifshitz (1962). The 

metric tensor  g~k has s ignature + - - - ,  and  its de te rminan t  is denoted  by 

g. The D 'A lembe r t i an  is defined by [] = gPqVpVq, where Vp is a covariant  

derivative;  ano ther  no ta t ion  for the covariant  derivative is a semicolon.  The 
Riemann-Chr i s to f fe l  tensor  is defined in terms of the Cristoffel connec t ion  

F i"~ by 

i a r k m  a r ~ l  i n i n 
Rklrn-- OX l OX m t - r~ fkm- - F nmr k t  

The Ricci tensor  is Rig = R ilk" 
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